روش های عددی در معادلات انتگرال-دیفرانسیل با هسته های منفرد ضعیف
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه
- author سمیه میرشکاری بنده قرایی
- adviser یدالله ا علی مردان شاهرضایی
- Number of pages: First 15 pages
- publication year 1388
abstract
هدف اصلی در این پایان نامه حل معادلات انتگرال-دیفرانسیل با هسته منفرد ضعیف توسط دو روش اسپلاین هم محلی و گالرکین گسسته می باشد.هم چنین در این پایان نامه به مقایسه دو روش پرداخته و سپس روش مناسب تر را معرفی می کنیم. این پایان نامه مشتمل بر4فصل می باشد.در فصل اول مقدماتی از آنالیز حقیقی و آنالیز تابعی و آنالیز عددی ارائه می گردد که مورد نیاز فصل های بعدی می باشد.در فصل دوم ،به بررسی معادلات انتگرالو انواع آن می پردازیم.در فصل سوم ، روش های تصویر و کاربرد آن در حل معادلات انتگرال بیان می شود. در فصل چهارم ، به بررسی روش اسپلاین هم محلی و گالرکین گسسته وهمگرایی این روش ها می پردازیم و در انتها با ارائه مثال هایی ، روش های نامبرد را مورد ارزیابی قرار می دهیم.
similar resources
روش هسته بازتولیدی برای حل معادلات انتگرال-دیفرانسیل فردهلم با هسته منفرد ضعیف
ز انجایی که برای حل معادلات انتگرال منفرد (sies) که مبنای آنها مسائل تماس -شکست در مکانیک جامدات است روشهای عددی وجود دارد این روشها مبنای بسیاری از تحقیقات بوده است (که شامل روشهای هسته ی باز تولیدی می باشد .)
روش گالرکین گسسته برای حل معادلات انتگرال -دیفرانسیل فردهلم با هسته های به طور ضعیف منفرد
چکیده ندارد.
حل عددی یک کلاس از معادلات انتگرال دیفرانسیل ولترا با هسته منفرد ضعیف
هدف اصلی در این پایان نامه تقریب جواب معادلات انتگرال- دیفرانسیل ولترای خطی و غیرخطی با هسته منفرد ضعیف می باشد. ابتدا جواب تقریبی معادلات انتگرال-دیفرانسیل ولترای خطی و غیر خطی مرتبه اول با هسته منفرد ضعیف را به دست می آوریم وسپس معادلات انتگرال-دیفرانسیل ولترای خطی مرتبه دوم با هسته منفرد ضعیف را حل می کنیم . برای حل این معادلات ابتدا با استفاده از تقریب تیلور مشکل منفرد بودن هسته معادله ا...
15 صفحه اولروش های طیفی در حل عددی معادلات انتگرال منفرد ضعیف
در این پایان نامه از روش تاو استاندارد برای حل عددی معادلات انتگرال منفرد ضعیف استفاده کرده ایم. این روش بر پایه تقریب تابع مجهول با استفاده از چندجمله ایهای چبیشف بنا نهاده شده است. پس از جایگذاری تقریب تابع مجهول در معادله انتگرال به جای تابع مجهول، از روش انتگرال گیری گاوس استفاده کرده و معادله انتگرالی را تقریب می زنیم. سپس تابع باقیمانده را تعریف کرده و با استفاده از روش گالرکین ضرب داخلی ...
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023